543 research outputs found

    The Common Shrew (Sorex araneus): A neglected host of tick-borne infections?

    Get PDF
    Although the importance of rodents as reservoirs for a number of tick-borne infections is well established, comparatively little is known about the potential role of shrews, despite them occupying similar habitats. To address this, blood and tick samples were collected from common shrews (Sorex araneus) and field voles (Microtus agrestis), a known reservoir of various tick-borne infections, from sites located within a plantation forest in northern England over a 2-year period. Of 647 blood samples collected from shrews, 121 (18.7%) showed evidence of infection with Anaplasma phagocytophilum and 196 (30.3%) with Babesia microti. By comparison, of 1505 blood samples from field voles, 96 (6.4%) were positive for A. phagocytophilum and 458 (30.4%) for Ba. microti. Both species were infested with the ticks Ixodes ricinus and Ixodes trianguliceps, although they had different burdens: on average, shrews carried almost six times as many I. trianguliceps larvae, more than twice as many I. ricinus larvae, and over twice as many nymphs (both tick species combined). The finding that the nymphs collected from shrews were almost exclusively I. trianguliceps highlights that this species is the key vector of these infections in this small mammal community. These findings suggest that common shrews are a reservoir of tick-borne infections and that the role of shrews in the ecology and epidemiology of tick-borne infections elsewhere needs to be comprehensively investigated

    Size-mediated, density-dependent cannibalism in the signal crayfish Pacifastacus leniusculus (Dana, 1852) (Decapoda, Astacidea), an invasive crayfish in Britain

    Get PDF
    Many thanks to the University of Aberdeen who funded the project and Robert Laughton, director of the Findhorn, Nairn and Lossie Fisheries Trust, who provided useful field work advice and equipment. Thank you to Scottish Natural Heritage for support and facilitating the project with swift licensing (licence no. 22482). We would also like to acknowledge the Peoples Trust for Endangered Species (PTES) for their sponsoring of Connor Wood and for their support of our research. Many thanks also to Ewan McHenry for his assistance with data collection in the field.Peer reviewedPostprin

    Are silica defences in grasses driving vole population cycles?

    Get PDF
    Understanding the factors that drive species population dynamics is fundamental to biology. Cyclic populations of microtine rodents have been the most intensively studied to date, yet there remains great uncertainty over the mechanisms determining the dynamics of most of these populations. For one such population, we present preliminary evidence for a novel mechanism by which herbivore-induced reductions in plant quality alter herbivore life-history parameters and subsequent population growth. We tested the effect of high silica levels on the population growth and individual performance of voles (Microtus agrestis) reared on their winter food plant (Deschampsia caespitosa). In sites where the vole population density was high, silica levels in D. caespitosa leaves collected several months later were also high and vole populations subsequently declined; in sites where the vole densities were low, levels of silica were low and population density increased. High silica levels in their food reduced vole body mass by 0.5% a day. We argue that silica-based defences in grasses may play a key role in driving vole population cycles

    Turning back the tide of American mink invasion at unprecedented scales in partnership with communities

    Get PDF
    Lambin, X., Atkinson, S., Bryce, R., Davies, L., Gray, H., Oliver, M.K, Urquhart, J

    Density-dependent increase in superpredation linked to food limitation in a recovering population of northern goshawks, Accipiter gentilis

    Get PDF
    We are grateful to R. Lourenço and A.K. Mueller for their helpful comments. We thank Forest Research for funding all fieldwork on goshawks during 1973-1996, Forest Enterprise for funding fieldwork after 1998 and T. Dearnley and N. Geddes for allowing and facilitating work in Kielder Forest. This work was also partly funded by a Natural Environment Research Council studentship NE/J500148/1 to SH and a grant NE/F021402/1 to XL and by Natural Research. We thank I. Yoxall and B. Little for the data they collected and their contributions to this study. Lastly, we thank English Nature and the British Trust for Ornithology for kindly issuing licences to monitor goshawk nest sitesPeer reviewedPostprin
    • …
    corecore